The Geology of War

 

On D-Day—June 6, 1944—more than 34,000 Allied troops poured from planes and ships onto Normandy’s Omaha Beach. Today, though all visible signs of the battle are gone, a UT geologist has told a new story through clues buried in the sand.

Earle McBride and Dane Picard were traveling across France doing geologic fieldwork in 1988 when they took time out to play tourists at Omaha Beach, site of one of the most ferocious battles during the D-Day invasion more than 40 years earlier. It was a miserably cold and blustery day. They tarried just long enough to scoop a sample of beach sand into a little baggie.

McBride, a professor emeritus in UT’s Jackson School of Geosciences, collects sand any chance he gets. By analyzing sand from modern dunes, beaches, and rivers anywhere in the world, he can link the mineral compositions of ancient sandstones to the environments that forged them.

A few years after the French trip, he put the beach sand under a microscope and discovered tiny metal shards mixed with the ordinary bits of quartz and other materials he expected to see. Those shards turned out to be shrapnel from the World War II invasion. On closer examination, he also found iron and glass beads that resulted from the intense heat unleashed by explosions in the air and sand.

“It is of course not surprising that shrapnel was added to the Omaha Beach sand at the time of the battle, but it is surprising that it survived 40-plus years and is doubtless still there today,” wrote McBride and Picard, a professor emeritus at the University of Utah, in Earth Magazine.

On D-Day, Omaha Beach was one of five Allied landing points along an 80-kilometer stretch of coastline. “The battles were bloody and brutal,” wrote McBride and Picard, “but by day’s end, the Allies had established a beachhead.”

It proved to be the turning point of the war. McBride was just 12 years old in 1944.

“We’d hear daily reports on the progress of the war in Europe,” he says. “It was all so far away. I knew where France was, but I didn’t know where Normandy was.”

To analyze the sand, McBride mixed the tiny grains with a blue epoxy, making what amounted to artificial sandstone, and then sliced it into thin sections. Under a microscope, he could see opaque grains that appeared shiny, an unusual feature for naturally occurring minerals. The shard-like angularity of the grains suggested these were not naturally formed. Ordinary wave action tends to blunt sharp edges. Other tests showed the metal shards contained large amounts of iron and were magnetic. At this point, he had no doubt these were pieces of shrapnel.

McBride found that 4 percent of the sand is made up of bits of shrapnel. Because the beach surface is continually reworked by wind and waves, a sample taken on another day might have yielded a different abundance. He also found trace amounts of spherical iron beads and glass beads. Some iron beads were broken, revealing hollow centers. Using a scanning electron microscope, he was able to study the shape, texture, and size of the fragments in detail.

“Today, the only visible indications of the horrific battles fought at Omaha Beach are some concrete casements above the beach and nearby cemeteries that quietly mark the thousands of lives lost,” wrote McBride and Picard.

Gone are the wrecks of planes, ships and tanks, the shell casings, the scraps of rotted boot leather, and all the other detritus of war long since spirited away by generations of beachcombers. And so it fell to a pair of geologists to pluck one last relic from the sand, hidden under the feet of thousands of tourists every year.

Unlike the global layer of radioactive fallout from the 1950s-era atomic bomb tests that geologists and others now use to calibrate their tools for dating geologic materials, the microscopic fingerprint of the D-day invasion probably won’t endure.

McBride says the iron-rich shrapnel shards could probably withstand the scouring action of waves alone for hundreds of thousands of years. But studying the shrapnel grains under high magnification, he observed particles of iron oxide, or rust, created by a chemical reaction between saltwater and iron. Waves churn the iron fragments, which rubs off some of the rust and exposes fresh material, which is more amenable to rusting, which in turn gets rubbed off, and so on.

“The net result is these things will get smaller and smaller and then finally get carried away by storms or hurricanes and be taken out of the beach,” says McBride. “So their time is numbered.”

“[T]he combination of chemical corrosion and abrasion will likely destroy the grains in a century or so,” wrote McBride and Picard, “leaving only the memorials and people’s memories to recall the extent of devastation suffered by those directly engaged in World War II.”

This story first appeared on the Jackson School of Geosciences website.

Photos from top: American troops watch Omaha Beach as their landing craft approach the shore, 6 Jun 1944 (U.S. National Archives); scanning electron microscope image of shrapnel grains and an iron bead (Earle McBride/Dane Picard); Earle McBride at work (Marc Airhart); Omaha Beach sand seen through a binocular microscope (Earle McBride/Dane Picard).

 

Tags: , , , ,

 
 

No comments

Be the first one to leave a comment.

Post a Comment


 

The Texas 10
McCombs on Fracking
UT Libraries: Think space.
University Towers
 
 
 
Menu